In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model.
نویسندگان
چکیده
PURPOSE We have previously shown that zebrafish (Danio rerio) embryos can be used as an in vivo model to validate modifiers of the radiation response. Here, we evaluated the radioprotective effect of the nanoparticle DF-1, a fullerene with antioxidant properties, in zebrafish embryos. EXPERIMENTAL DESIGN Zebrafish embryos were exposed to different doses of ionizing radiation ranging from 20 to 80 Gy in the presence and absence of DF-1. Toxicity and radioprotective effects were assessed by monitoring overall survival and morphology as well as organ functions by employing assays to measure kidney excretory function and development of sensory nerve cells (neuromasts). Antioxidant properties of DF-1 were assessed in whole fish. RESULTS DF-1 had no apparent adverse effects on normal zebrafish morphology or viability throughout the concentration range tested (1-1,000 micromol/L). Ionizing radiation (10-40 Gy) caused time-dependent and dose-dependent perturbations of normal zebrafish morphology and physiology, notably defective midline development resulting in dorsal curvature of the body axis ("curly-up"), neurotoxicity, impaired excretory function, and decreased survival of the exposed embryos. DF-1 (100 micromol/L) markedly attenuated overall and organ-specific radiation-induced toxicity when given within 3 hours before or up to 15 minutes after radiation exposure. By contrast, DF-1 afforded no protection when given 30 minutes after ionizing radiation. The degree of radioprotection provided by DF-1 was comparable with that provided by the Food and Drug Administration-approved radioprotector amifostine (4 mmol/L). Protection against radiation-associated toxicity using DF-1 in zebrafish embryos was associated with marked reduction of radiation-induced reactive oxygen species. CONCLUSION The fullerene DF-1 protects zebrafish embryos against deleterious effects of ionizing radiation due, in part, to its antioxidant properties.
منابع مشابه
Evaluation of the fullerene compound DF-1 as a radiation protector
BACKGROUND Fullerene compounds are known to possess antioxidant properties, a common property of chemical radioprotectors. DF-1 is a dendrofullerene nanoparticle with antioxidant properties previously found to be radioprotective in a zebrafish model. The purpose of this study was to evaluate the radioprotective effects of DF-1 in a murine model of lethal total body irradiation and to assess for...
متن کاملZebrafish as a Model System to Screen Radiation Modifiers
Zebrafish (Danio rerio) is a bona fide vertebrate model system for understanding human diseases. It allows the transparent visualization of the effects of ionizing radiation and the convenient testing of potential radioprotectors with morpholino-modified oligonucleotides (MO) knockdown. Furthermore, various reverse and forward genetic methods are feasible to decipher novel genetic modifiers of ...
متن کاملThe Anti-melanogenesis Activities of Some Selected Red Macroalgae from Northern Coasts of the Persian Gulf
Tyrosinase is a key enzyme in melanin production. Therefore, tyrosinase inhibitors are used in cosmetic and medicinal industries to prevent or treat overproduction of melanin such as melasma, solar lentigo and post inflammatory melanoderma. Due to safety of natural whitening agents, in the present study, in-vitro anti-tyrosinase and in-vivo anti-melanogenesis activities of some selected red mac...
متن کاملThe Anti-melanogenesis Activities of Some Selected Red Macroalgae from Northern Coasts of the Persian Gulf
Tyrosinase is a key enzyme in melanin production. Therefore, tyrosinase inhibitors are used in cosmetic and medicinal industries to prevent or treat overproduction of melanin such as melasma, solar lentigo and post inflammatory melanoderma. Due to safety of natural whitening agents, in the present study, in-vitro anti-tyrosinase and in-vivo anti-melanogenesis activities of some selected red mac...
متن کاملReal-world carbon nanoparticle exposures induce brain and gonadal alterations in zebrafish (Danio rerio) as determined by biospectroscopy techniques.
Carbon-based nanoparticles (CNPs) have emerged as novel man-made materials with diverse applications, which may present significant risks to organisms. To bridge the gap in our knowledge of nanotoxicology, a number of in vitro or in vivo studies have been carried out. However, toxicity data remains limited. Herein, we employed a biospectroscopy approach to assess CNP-induced effects in zebrafis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 12 23 شماره
صفحات -
تاریخ انتشار 2006